" Forecasting Stock Market Volatility and the Application of Volatility Trading Models "
نویسنده
چکیده
This paper examines the ability of GARCH(1,1) and GARCH(1,1) + Implied Volatility models to forecast stock market volatility on the FTSE100 index. Comparing the volatility forecasts with the implied volatility of the corresponding at-the-money index option contract, it is investigated whether successful volatility trading models can be developed. An at-the-money index call was bought/sold if the volatility forecast was above/below the implied volatility by a certain threshold. Eight different trading strategies were developed combining the different methods of forecasting, different activation thresholds and different weightings. The strategies were analysed and performance assessed in terms of the profit / loss generated. It was found that forecasting techniques that include both market based information and times series information produce better forecasts. The combined models also produced more profitable signals. On the evidence of the research presented in this paper, the conclusion is that options markets appear to be inefficient and/or the option pricing formulae used are incorrect. This is a direct inference from the fact that volatility forecasts have been used to identify mispriced options and profitable trading rules have been established based on the implied volatility of the option and the forecasted volatility of the corresponding index.
منابع مشابه
A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کاملAnalysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach
Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملModeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کامل